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Abstract: This work proposes an effective and efficient use of energy supply for a Vertical Take-Off and Landing Unmanned Aerial Vehicle 
(VTOL UAV). Because of low power consumption, a 2-DOF parallel mechanism is used as dual axis solar tracker, and mounted on a UAV. 
Then, the UAV becomes a multi rigid-body UAV which has loops of connected links. Dynamic modeling for the system is one of the most 
challenging engineering problems. To deal with it, kinematic constraints of all joints are determined. Undetermined close form reaction 
forces at joints are obtained from the kinematic constraints. Using Newton’s method, dynamic equation for each body exerted by external 
forces and reaction forces is formulated. A fully determined equation, which is system equation of algebraic-differential equations, is 
obtained by appending kinematic and dynamic equations. For both kinematic and dynamic equations, Cartesian coordinate and Euler 
parameter are used to describe translation and rotation motions respectively. 
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1. INTRODUCTION1

Effective and efficient energy supply by solar energy to 
power UAVs has been an active research for more than four 
decades. The first solar-powered UAV, Sunrise I of Astro 
Flight Inc., took its first flight in California in 1974, [1]. In 
2003, possible use of a solar-powered UAV for agricultural 
decision support was reported by [2]. In [3], continuous 
flight of solar-powered airplanes was considered, and a 
methodology used for the complete design was presented. 
With a mechanism simulating the motion of aircraft, virtual 
flight system was designed for evaluation of a solar-powered 
UAV by [4]. For improving efficiency of solar energy 
collection, a UAV with onboard solar tracking system was 
designed and constructed by [5]. In our work, we 
specifically study this type of design for the purpose of 
effective and efficient use of energy supply. Literally, single 
and dual axis solar trackers are the systems that improve 
energy efficiency by optimizing collection of sun light onto 
solar panel. In [5], a single-axis solar tracker was designed 
and tested. The tracking system autonomously rotated an 
onboard solar panel to find the angle of maximum solar 
irradiance while the UAV was found to have the maximum 
and minimum of net energy gain over a conventional solar-
powered UAV of 34.5% and 0.8% respectively. 

This material is based upon work supported by the Air Force Office of 
Scientific Research under award number FA2386-17-1-0148 
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Dual axis solar tracker has been of interest research topic for 
many researchers, [6]-[19], because of its outperformance 
over single axis solar tracker. Many researches on energy 
gain from solar tracking systems compared to tilted fixed 
panel had been done both theoretically and experimentally 
[6]. Energy gain from a single axis solar tracker was 
reported to be 20% [17] while energy gain from a dual axis 
solar tracker was 30-40% [18]. [19] proposed a two-axis 
decoupled solar tracking system based on parallel 
mechanism and showed that the tracker requires less driving 
torque, thus less power dissipation than the conventional 
serial tracker does. Furthermore, the tracking system does 
not need reducer with large reduction ratio, which reduce it 
weight. In our study, we use this tracking system onboard, 
and we consider VTOL UAV. The complete system is called 
a multi rigid-body UAV, and, thus, its dynamic modeling is 
challenging. 

In general, dynamic modeling using Lagrange’s dynamic 
equation yields the smallest number of differential equations 
and, therefore, computational efficient. However, the order 
of nonlinearity is high, and derivation of equation in 
expanded form of multibody system with loops of connected 
links is very tedious. For a system with more than one loop 
like the tracker, the derivation is even more difficult, and 
only partial reaction forces can be determined. With 
Cartesian coordinates and Euler parameter for describing 
rotation, dynamic modeling using Newton-Euler’s method is 
much simpler, and systematic generation of kinematic 
constraints of  kinematic pairs and dynamic equations can be 
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Fig. 1. Cartesian coordinate system

derived easily, [20]. The method yields system equations
of algebraic-differential equations. Reaction forces and the
coordinates describing motion of a system are obtained from
solving the equations. The reaction force has an advantage
for mechanical structure design. However, the analysis of
reaction forces is out of scope of this work. With the support
of increasing computational power of computer nowadays,
we use this method for modeling which is easy to use for
simulation.

The remaining contents in this paper are organized as
follows. In section II, the parallel mechanism is explained
on configuration and degree of freedom, and its kinematic is
described by using Cartesian coordinate. Dynamic equations
for unconstrained and constrained body which are described
in Cartesian coordinate and using Euler parameter are given
in section III. For constrained body, the resulted equation
is in the form of system algebraic-differential equations. In
section IV, the dynamic modeling of the multi rigid-body
UAV is elaborated. The final section sums up our work.

II. KINEMATIC EQUATIONS FOR THE MECHANISM

Cartesian coordinate is used to describe the system config-
uration, and constraint equations are obtained from individual
joints. Figure 1 shows the coordinate system, where (Oxyz)
is global frame and (Oiξiηiζi) is body-fixed frame attached
on body i with the center of mass Oi. A point P on the
body has coordinate as a vector in body-fixed frame and
global frame defined by sPi and rPi respectively.

Figure 2 shows a parallel mechanism which is used as
dual axis solar tracker. The body numbers are labeled as seen
in the figure. The mechanism consists of 7 connected rigid
bodies. It has a global coordinate (Oxyz), and each body
has its own body-fixed frame as explained in Fig. 1. Body
7 is connected with body 5 and 6 via 2 spherical joints and
with body 4 via a universal joint. Body 6 is connected with
body 2 via a revolute joint. Body 5 is connected to body 3
via a universal joint. Body 4 is connected to body 1 (ground)
via another revolute joint. Body 3 is connected with body 1
via a translational joint. Body 2 is connected with body 1 via
another translational joint. Two linear actuators are attached
at the translational joints. The actuators exert forces on body
2 and 3 along vertical axes.
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Fig. 2. Parallel Mechanism

Degree of Freedom (DOF) of a system is the minimum
number of coordinates required to fully describe the config-
uration of the system. DOF for spatial mechanism can be
defined by

DOF = 6(b− 1)−
∑
k∈Tj

nkck (1)

where b is the number of the body; nk is the number of
each type of joints; ck is the number of constraints for each
type of joints; and TJ is the set of types of joints. For
the parallel mechanism shown in Fig. 2, denote S, U, R
and T as spherical joint, universal joint, revolute joint, and
translational joint, respectively. Then, we have b = 7, TJ =
{S,U,R,T}, nk∈TJ = {2, 2, 2, 2}, and ck∈TJ = {3, 4, 5, 5}.
Therefore DOF can be calculated as

DOF = 6(7− 1)− 2× 3− 2× 4− 2× 5− 2× 5 = 2

Denote
• qi = [rT , pT ]Ti = [x, y, z, e0, e1, e2, e3]Ti a coordinate

vector of the body i, where ri is position vector of the
center of mass of the body as illustrated in Fig. 1, and
pi = [e0, e

T ]Ti = [e0, e1, e2, e3]Ti is Euler parameter.
The parameter satisfies a mathematical relationship,

pTi pi − 1 = 0. (2)

The second time derivative of the equation is

pTi p̈i + ṗTi ṗi = 0 (3)

• Ri a rotational matrix of body i, and a pair of 3 × 4
matrices Gi and Li defined as Gi = [−e, ẽ+ e0I]i and
Li = [−e,−ẽ + e0I]i. Then Ri = GiL

T
i , [20]. The
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global coordinate of the point P illustrated in Fig. 1
can be defined by

rPi = ri +Ris
′P
i = ri +GiL

T
i s
′P
i , (4)

where s′Pi = [ξP , ηP , ζP ]Ti is body-fixed coordinate of
the point P .

• q = [qT1 , q
T
2 , q

T
3 , q

T
4 , q

T
5 , q

T
6 , q

T
7 ]T coordinate vector for

describing the configuration of the mechanism, and its
respective first and second time derivative, q̇ and q̈, for
describing the motion of the mechanism. The number
of coordinates of the system is n = 7 × 7 = 49,
and the number of Euler parameter relationship (or
mathematical constraint) is 7.

• and
Φ ≡ Φ(q) = 0 (5)

kinematic equation derived from kinematic constraints
which have 34 equations. The compact form of the
kinematic equation for each joint is given in Appendix
A.

III. DYNAMIC EQUATIONS FOR UNCONSTRAINED AND
CONSTRAINED BODIES

From Newton’s method, an unconstrained body i with
mass mi and moment of inertia J ′i with respect to its center
of mass exerted by external force fi and moment τ ′i has
dynamic equation of motion as[

N 0
0 J ′

]
i

[
r̈
ω̇′

]
i

+

[
0

ω̃′J ′ω′

]
i

=

[
f
τ ′

]
i

, (6)

where Ni = diag([m m m])i and ω′i is angular velocity
defined in the body-fixed frame. To use Euler parameters,
the rotation equation of (6) is transformed and appended with
(3) as [

2J ′L
pT

]
i

p̈i +

[
LH
ṗT

]
i

ṗi =

[
τ ′

0

]
i

, (7)

where Hi = 4L̇Ti J
′
iLi.

A constrained body i is additionally exerted by reaction
forces and moments [f (c), τ ′(c)]Ti from joints. These forces
and moments can be transformed to coordinate system con-
sistent with q denoted by [f∗(c), τ∗(c)]Ti and defined by[

f∗(c)

τ∗(c)

]
i

=

[
ΦTr
ΦTp

]
i

λ, (8)

where λ = [λ1, . . . , λ34] is called Lagrange multiplier,
and [Φr,Φp]i = Φqi is Jacobian matrix of the kinematic
constraint Φ ≡ Φ(q) with respect to qi. To be used with the
formulation (7), the moment in (8) is transformed to be

τ ′(c) =
1

2
Liτ
′∗(c)

=
1

2
LiΦ

T
piλ,

then first equation of (7) for constrained body becomes

2J ′Lip̈i + LiHiṗi −
1

2
LiΦ

T
piλ = τ ′i . (9)

For the system with 7 bodies, the dynamic equation can be
obtained as[

M BT

P 0

] [
q̈
−λ

]
+

[
c1
c2

]
=

[
g
0

]
, (10)

where

M =


N1 0 . . . 0 0
0 2J ′1L1 . . . 0 0
...

...
. . .

...
...

0 0 . . . N7 0
0 0 . . . 0 2J ′7L7

 ,

B = [Φr1 ,
1

2
Φp1L

T
1 , . . . ,Φr7 ,

1

2
Φp7L

T
7 ],

P =

 0T pT1 . . . 0T 0T

...
...

. . .
...

...
0T 0T . . . 0T pT7

 ,

c1 =


0

L1H1ṗ1
...
0

L7H7ṗ7

 , c2 =

 ṗT1 ṗ1
...

ṗT7 ṗ

 , and g =


f1
τ ′1
...
f7
τ ′7


To solve this equation for q and λ, the constraint equation is
needed. The second time derivative of the constraint equation
(5) is given by

Φq q̈ = γ, (11)

where γ = −(Φq q̇)q q̇ is called the right-hand-side of
acceleration equation. This equation is then appended with
(10) to yield a system of algebraic-differential equation as M BT

P 0
Φq 0

[ q̈
−λ

]
+

 c1
c2
0

 =

 g
0
γ

 , (12)

IV. DYNAMIC EQUATIONS FOR
PARALLEL-MECHANISM-MOUNTED UAV

Figure 3 shows the combined system of an hexacopter
and the parallel mechanism. Body numbers are labeled as
illustrated in the figure. Body-fixed frame for the hexacopter
(body 1) is attached at the center of mass of the body.

Thrust and torque generated by a propeller are modeled
as

fk = [0, 0,Kfω
2
k]T , (13)

τk = [0, 0,−sign(ωk)Kτω
2
k]T (14)

where k = 1, . . . , 6, Kf and Kτ are force and torque
constants respectively, and ωk is angular velocity of the
k-th propeller. Let a control input vector generated by the
propellers,

up = [u1, . . . , u6]T = [ω2
1 , . . . , ω

2
6 ]T . (15)
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Fig. 3. Parallel-mechanism-mounted UAV

Then, the total force and moment generated by all the
propellers are

fp =
∑
k

fk = Apfup

τp =
∑
k

(ãkfk + τk) = Apτup
(16)

where Apf = 1z[kf , . . . , kf ],

Apτ = [kf ã11z−kτ sign(ω1)1z, . . . , kf ã61z−kτ sign(ω6)1z],

where 1z = [0, 0, 1]T , and ak is vector from the center of
mass of the hexacopter to axis of propeller k.

Two linear actuators are mounted on the hexacopter and
exert forces on the body 2 and 3 through the translational
joints. The forces are also control input for the system (12)
and denoted by[

f1−2,ζ
f1−3,ζ

]
=

[
u7
u8

]
and

[
f2−1,ζ
f3−1,ζ

]
= −

[
u7
u8

]
,

(17)
where u7 and u8 are scalars.

Denote u = [up, u7, u8]T , a control input vector for
the whole system. Then, the non-zero external forces and
moments which exert on respective body 1, 2 and 3 are given
by

g1 =

[
R1(fp − u7 − u8)

τp − b̃11zu7 − b̃21zu8

]
=

[
A1f

A1τ

]
u

g2 =

[
R21zu7

0

]
=

[
A2f

0

]
u

g3 =

[
R31zu8

0

]
=

[
A3f

0

]
u

(18)

where

A1f = R11z[kf , . . . , kf ,−1,−1],

A1τ = [Apτ ,−b̃11z,−b̃21z],

A2f = R21z[0, . . . , 0, 1, 0],

A3f = R31z[0, . . . , 0, 0, 1],

and b1 and b2 are vectors from the center of mass of the
hexacopter to the axes of the two linear actuators. Therefore
the dynamic equation of motion (12) can be rewritten as M BT

P 0
Φq 0

[ q̈
−λ

]
+

 c1
c2
0

 =

 0
0
γ

+

 A
0
0

u,
(19)

where A = [AT1f , A
T
1τ , A

T
2f , 0

T , AT3f , 0
T , . . . , 0T ]T .

V. CONCLUSION

A multi rigid-body UAV consisting of a hexacopter and a
parallel mechanism which is used as a dual axis solar tracker
is studied. The system involves loops of connected links
which induces high complexity of its kinematic and dynamic.
Because of the simplicity in systematic equation generation,
Cartesian coordinate and Euler parameter are used in kine-
matic and dynamic modelings for the parallel mechanism and
the multi rigid-body UAV. The resulted dynamic model is in
the form of algebraic-differential equations, which is very
useful and easy to use for simulation, numerical analysis,
and mechanical design. For future work, we will simulate a
multi rigid-body UAV that flies and tracks the sun at same
time. We will use various controllers from literature, which
had been designed for single body UAV only, to observe
robustness and adaptiveness of the controllers.

APPENDIX A

• Constraint equation for two perpendicular vectors: One
constraint equation obtained from scalar product is
Φ

(n1,1)
i&j (q) ≡ sTi sj = s′Ti R

T
i Rjs

′
j = 0 or Φ

(n2,1)
i&j (q) ≡

sTi d = s′Ti R
T
i (rj +Rjs

′P
j − ri −Ris′Pi ) = 0.

• Constraint equation for two parallel vectors: Two con-
straint equations are obtained from cross product,
Φ

(p1,2)
i&j (q) ≡ s̃isj = Ris̃

′
iR

T
i Rjs

′
j = 0 or Φ

(p2,2)
i&j (q) ≡

s̃id = Ris̃
′
iR

T
i (rj + Rjs

′P
j − ri − Ris

′P
i ) = 0.

Although a cross product yields a vector with three
components, one component is dependent of the other
two components. Therefore, only two of the components
are needed for obtaining constraint equations.

• Constraint equation for a common point on two bodies:
Two bodies having a common point P creates three
constraint equations, Φ

(s,3)
i&j (q) ≡ rPi − rPj = ri +

Ris
′P
i − rj −Rjs′Pj = 0

For the parallel mechanism, by following the concept of
relative constraints between two bodies from [20] the 34
constraint equations are obtained as follows:
• Spherical joint number 1 between bodies 5 and 7 has 3-

constraint equations as the joint is made of two bodies
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having a common point. The compact form of the
equations is given by

Φ1−3 = Φ
(s,3)
5&7 (q) = 0 (20)

• Spherical joint number 2 between bodies 6 and 7 also
has 3-constraint equations given by

Φ4−6 = Φ
(s,3)
6&7 (q) = 0 (21)

• Universal joint number 1 between bodies 4 and 7 has
4-constraint equations including 3-constraint from a
common point and 1-constraint from two perpendicular
vectors. Thus, the compact form of the equation for the
joint is

Φ7−10 =

[
Φ

(s,3)
4&7

Φ
(n1,1)
4&7

]
= 0 (22)

• Universal joint number 2 between bodies 3 and 5 also
has 4-constraint equations given by

Φ11−14 =

[
Φ

(s,3)
3&5

Φ
(n1,1)
3&5

]
= 0 (23)

• Revolute joint number 1 between bodies 1 and 4 has 5-
constraint equations including 3-constraint from a com-
mon point and 2-constraint from two parallel vectors.
Thus, the compact form of the equations is

Φ15−19 =

[
Φ

(s,3)
1&4

Φ
(p1,1)
1&4

]
= 0 (24)

• Revolute joint number 2 between bodies 2 and 6 also
has 5-constraint equations given by

Φ20−24 =

[
Φ

(s,3)
2&6

Φ
(p1,1)
2&6

]
= 0 (25)

• Translational joint number 1 between bodies 1 and 3
has 5-constraint equations including 4-constraint from
two pairs of parallel vectors and 1-constraint from two
perpendicular vectors. Thus, the compact form of the
equation is given by

Φ25−29 =

 Φ
(p1,2)
1&3

Φ
(p2,2)
1&3

Φ
(n1,1)
1&3

 = 0 (26)

• Translational joint between bodies 1 and 2 also has 5-
constraint equations given by

Φ30−34 =

 Φ
(p1,2)
1&2

Φ
(p2,2)
1&2

Φ
(n1,1)
1&2

 = 0 (27)
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